
PaR-PaR Laboratory Automation Platform
Gregory Linshiz,†,‡ Nina Stawski,†,‡ Sean Poust,§ Changhao Bi,‡ Jay D. Keasling,†,‡,§

and Nathan J. Hillson*,†,‡,∥

†Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
‡Physical Bioscience Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 978R4121, Berkeley, California
94720, United States
§Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California
94720, United States
∥DOE Joint Genome Institute, Walnut Creek, California 94598, United States

*S Supporting Information

ABSTRACT: Labor-intensive multistep biological tasks, such as
the construction and cloning of DNA molecules, are prime
candidates for laboratory automation. Flexible and biology-friendly
operation of robotic equipment is key to its successful integration in
biological laboratories, and the efforts required to operate a robot
must be much smaller than the alternative manual lab work. To
achieve these goals, a simple high-level biology-friendly robot
programming language is needed. We have developed and
experimentally validated such a language: Programming a Robot
(PaR-PaR). The syntax and compiler for the language are based on computer science principles and a deep understanding of
biological workflows. PaR-PaR allows researchers to use liquid-handling robots effectively, enabling experiments that would not
have been considered previously. After minimal training, a biologist can independently write complicated protocols for a robot
within an hour. Adoption of PaR-PaR as a standard cross-platform language would enable hand-written or software-generated
robotic protocols to be shared across laboratories.

KEYWORDS: synthetic biology, design automation, liquid-handling robotics, laboratory automation, high-level programming language

Laboratory automation systems were first developed
decades ago to improve the accuracies and decrease the

costs and turn-around times of clinical laboratory services.
Automation technologies have since been adopted by the
pharmaceutical industry to screen vast chemical libraries for
new drug lead compounds. Laboratory automation achieves
increased productivity and lowered costs by reducing
experimental error rates (eliminating the human factor) and
producing more reliable and reproducible experimental data.
Laboratory automation companies largely target the highly

repetitive industrial laboratory operations market and have
devoted little effort to developing flexible easy-to-use
programming tools for dynamic nonrepetitive research environ-
ments. To implement new protocols on robotic platforms,
research biologists are dependent either on professional
programmers or on vendor-supplied graphical user interfaces
that often lack flexibility, force users too keep track of too many
details (e.g., pipet tip logistics), and require excessive effort to
modify or debug existing protocols.1 Moreover, protocols
developed for one robotic platform are not transferable to other
platforms, precluding researchers from sharing protocols
between laboratories, or even between different robots in the
same laboratory. Since more time and effort is often required to
instruct a robot to perform a new task than the robot saves a
researcher by performing the task, researchers can only

effectively automate a small fraction of their workflows.
Nevertheless, well-funded research laboratories have invested
in liquid-handling robots aiming to accelerate research, save
time, and provide high-throughput solutions. While proudly
shown to visitors during laboratory tours, these robots
frequently remain under-utilized with very low duty cycles.
To successfully integrate robotics into academic biological
laboratory workflows, the efforts required to instruct and
operate a robot must be much smaller than the alternative
manual lab work. To achieve this goal, a simple high-level robot
programming language for biologists is required.
Beyond enabling biologists to manually instruct robots in a

time-effective manner, a simple high-level robot programming
language would also amplify the utility of biological design
automation software tools. There are several recent examples of
software tools generating protocols for specific liquid-handling
robotic platforms, including BglBrick assembly protocols for the
Beckman Biomek 30002−4 and Tecan Freedom Evo,5 PCR-
setup protocols for the NextGen/eXeTek expression work-
station,6,7 Gibson/Gateway assembly protocols for the Tecan

Special Issue: IWBDA 2012

Received: August 15, 2012
Published: October 4, 2012

Letter

pubs.acs.org/synthbio

© 2012 American Chemical Society 216 dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222

pubs.acs.org/synthbio


Freedom Evo,5 and recursive DNA construction and automated
cloning protocols for Tecan robots.8,9 Ideally, the protocols
generated by these software tools would be executable across
robotic platforms and not limited to one specific robot. As the
biological design/implementation process becomes increasingly
software-automated,10−26 achieving this ideal will become
increasingly important so that researchers across laboratories
with different robotics platforms can all benefit from design
automation software innovations.
Here, we report the development of a biology-friendly high-

level robot programming language PaR-PaR (Programming a
Robot). High-level languages such as PaR-PaR simplify writing
and maintaining programs by making the programming code
more intuitive and understandable. High-level languages can
also be translated (i.e., compiled) into specific instructions for a
variety of robotic platforms. The development of PaR-PaR is
guided by computer science principles along with a deep
understanding of biological workflows. PaR-PaR is based on an
object-oriented approach that represents physical laboratory
objects, including reagents, plastic consumables, and laboratory
devices, as virtual objects. Each object has associated properties,
such as a name and a physical location. Several objects can be
grouped together to create a new composite object with its own
properties, and in this way hierarchies of objects can be created.
PaR-PaR allows actions to be performed on objects, and
sequences of actions can be consolidated into protocols, which
in turn can be issued as PaR-PaR commands. Collections of
protocol definitions can be imported into PaR-PaR via external
modules.
A PaR-PaR script consists of two logical sections. In the first

section, the user declares and defines the robotic work table,
consumables, reagents, recipes, and protocols for the current
experiment. PaR-PaR has several declarative commands:
TABLE (load the robot’s work table configuration), PLATE
(define a plates’s name and location), COMPONENT (define a
reagent’s name, location, pipetting method, and other proper-
ties), VOLUME (define an alias for a given volume), RECIPE
(define mixtures of liquids to prepare), and PROTOCOL
(define a set of commands to perform). While the user
currently specifies COMPONENT locations manually, PaR-
PaR will notify the user, for example, if there is no such well on
the plate, or if a plate has not yet been defined. Program control

flow features (e.g., loops and conditionals) will be added to
PROTOCOL declarations when the anticipated feedback
module (Figure 1) is developed. In the second section, the
user issues commands that make use of the definitions declared
in the first section. PaR-PaR provides three basic liquid
handling commands: SPREAD (transfer liquid from one
location to many locations), TRANSFER (transfer many to
many), and PREPARE (prepare a recipe); and the MESSAGE
command, which allows for interactive features (e.g., prompting
the user to change a plate on the robotic work table; see the
Supporting Information file “colony_pcr.par”). Each location
on the robot work table is defined by three coordinates: plate
or carrier name, row, and column. We have developed a
compact way to define lists of wells on the plate (Table S1,
Supporting Information), as well as a few useful predefined
methods for liquid transfer (i.e., liquid classes) (Table S2,
Supporting Information). All three basic liquid handling
commands can optionally specify pipet tip management and
mixing after transfer instructions.
In addition to the development of PaR-PaR, we report its

integration with biological design automation software as well
as its experimental validation. We have further developed the j5
DNA assembly design automation software6 to output PCR-
setup protocols in PaR-PaR script. The 33-line j5-generated
PaR-PaR script we tested (Supporting Information file
“distribute_pcr.par”) was compiled into a 98-line (one
command per line) Tecan Freedom EVOware scripting
language file (Supporting Information file “distribute_pcr.esc”).
As a point of comparison, it would have required about an hour
using the EVOware graphical user interface to achieve the
equivalent of the j5-generated PaR-PaR script that took less
than a minute to compile. For the set of 11 j5-designed PCR
reactions we tested, the PCR reactions setup using a j5-output
PaR-PaR script compiled for the Tecan Freedom Evo have
results very similar to those setup manually (Figure S1,
Supporting Information). For both manual and robotic PCR
reaction preparations, 9 of the 11 PCR reactions performed
very well. The two remaining PCR reactions, with the largest
(10,931 bp; PCR_ID_0) and smallest (76 bp; PCR_ID_2)
expected product sizes, yielded either no product or only a
modest amount of product, respectively.

Figure 1. PaR-PaR modules and data flow. A researcher (optionally in conjunction with biological design automation software such as j5) composes
a PaR-PaR script. The PaR-PaR script is parsed by the parser, which sends all definitions, declarations, and commands (translated into the PaR-PaR
meta-language) to the database manager, which deposits this data in the database. The optimizer optimizes the operational flow of the sequence of
commands and adapts it to the configuration of the robotic platform. The translator translates the commands from the PaR-PaR meta-language into
the robotic scripting language. Finally, the robot executes the sequence of translated commands. Anticipated feedback, decision, analysis, and learning
modules, slated for future development, will provide postexecution analysis to the researcher, which will feed back into the protocol design process.

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222217



To explore another representative biological use-case
scenario, we composed a simple PaR-PaR script to automate
the setup of 144 colony PCR reactions. Following DNA
assembly and transformation, colonies can be screened for the
presence of constructs with correct assembly junctions with
colony PCR reactions that span across assembly junctions. For
complex DNA assemblies with multiple junctions (i.e.,
multipart DNA assembly reactions), multiple PCR reactions
are required to screen each colony. For challenging DNA
assembly tasks, it may be necessary to screen many colonies
before identifying a correct construct. In these situations, high-
throughput automated colony PCR screening is very desirable.
We interrogated 48 colonies for an 8-fragment DNA assembly
that should result in a 13.3-kb plasmid (Figure S2, Supporting
Information). To screen each colony, three pairs of primers
were designed. The first two pairs of primers span distinct pairs
of contiguous assembly junctions, and the third pair of primers
spans three contiguous junctions (Figure S2, Supporting
Information). Three PCR master mixes (each with one of the
three pairs of primers) were prepared manually. DNA
templates were manually prepared by picking and boiling
each of the 48 colonies. A simple 15-line PaR-PaR script
(Supporting Information file “colony_pcr.par”) was composed
and compiled into a 307-line EVOware scripting language file
(Supporting Information file “colony_pcr.esc”) to direct a
Tecan Feedom Evo robot to automate the preparation of the
144 (48 × 3) PCR reactions. As a hypothetical point of
comparison, had we wanted to change the PCR master mix
volume in each PCR reaction from 25 to 27 μL, it would have
taken less than a minute to make the 3 requisite changes in the
PaR-PaR script and recompile, while using the EVOware
graphical user interface it would have taken over an hour to
modify 162 commands. While it is not necessarily valid to
directly compare PaR-PaR and Tecan scripting language line
counts as relative measures of composition effort (unless
writing each line for the two languages is equally demanding),
enabling the user to dynamically configure protocols (by
adjusting volume and component location variables) without
modifying the underlying code, demonstrates a compelling
time-savings advantage for PaR-PaR. The resulting PCR
products were visualized in an agarose gel (Figure S3,
Supporting Information). Colonies with two or more PCR
reactions with DNA bands consistent with the expected
product sizes were subsequently mini-prepped and further
probed by restriction digest as a secondary screen (not shown).
Following this secondary screen, one correct clone was
obtained. Only one correct clone out of the 48 screened
colonies may seem low for routine DNA construction tasks, but
for an 8-fragment DNA assembly that results in a relatively
large 13.3-kb plasmid, the observed efficiency is not
unexpected. This particular low-efficiency DNA assembly is
representative of complex DNA construction tasks that will
increasingly depend on high-throughput colony PCR screening
to identify correct clones.
PaR-PaR can import optional modules to take advantage of

the robotic arms and peripheral devices that may be connected
to a given robot. Robotic systems consist of the following major
components: work table space, liquid handling arms,
manipulation arms, and integrated equipment and devices.
The work table can be equipped with various carriers and racks
for tubes, plates, tips, and reagents. Liquid handling arms
(LiHas) can consist of a various number (e.g., 1, 8, or 96) of
pipettes, each capable of handling a particular range of liquid

volumes that either use disposable or have fixed tips. Robotic
manipulation arms (RoMas) can move objects (e.g., tubes and
plates) around the work table and can load or unload them
from integrated devices (e.g., a PCR machine, vacuum
manifold, centrifuge, or plate reader). A PaR-PaR RoMa
module (currently under development) with the command
MOVE (move object from source to destination) could be
imported for robotic platforms containing RoMas, and a PaR-
PaR Vacuum module (anticipated development) with the
command VACUUM (toggle vacuum) could be imported for
platforms containing a vacuum manifold.
Going forward, we will work toward developing additional

modules as well as an application programming interface (API)
for PaR-PaR. Along with new translation modules (i.e.,
compilers for platforms other than the Tecan) that will enable
the same PaR-PaR protocol to be executed across multiple
robotic platforms, feedback, decision, analysis, and learning
modules (Figure 1) are slated for development. The feedback
module will receive experimental data from researchers, robots,
or peripheral devices during protocol execution in real-time and
store these data in the database. The decision module will
compare measured with expected values and determine
experimental success or failure given a set of deviation
thresholds. The analysis module will perform cross-experiment
analysis. The learning module will propose models to describe
systemic or specific object behavior. The development of a
PaR-PaR API will standardize communication between
peripheral devices, robotic and design automation software
programs, which can automatically produce protocols in PaR-
PaR script or in the PaR-PaR meta-language. It is important to
emphasize that the modular structure of PaR-PaR allows for
these anticipated modules to be developed on top of its already
useful functionality.
Finally, it is important to point out that the adoption of PaR-

PaR as a standard cross platform high-level robot programming
language would enable protocols written in PaR-PaR to be
performed on comparable platforms across laboratories. That is
to say, a researcher in one laboratory could provide reagents
and a PaR-PaR script to another researcher in another
laboratory to build the same construct even with different
sets of robotic hardware. Such a standardization effort could be
pursued as an extension to the Synthetic Biology Open
Language (SBOL; http://sbolstandard.org) effort.27 Protocols
could be deposited in a public PaR-PaR repository (or
exchanged directly between researchers), and all protocol
changes would be captured by a PaR-PaR version control
system.

■ METHODS
PaR-PaR Language Syntax. The complete syntax of the

PaR-PaR language, presented in Backus Naur form, is
documented in the PaR-PaR source code repository (https://
github.com/JBEI/parpar/blob/master/developer/parpar_bnf.
txt).

PaR-PaR Compiler. The PaR-PaR compiler consists of four
modules: parser, database manager, optimizer, and translator
(Figure 1). While the PaR-PaR compiler currently only outputs
instructions for the Tecan Evo liquid-handling robotic platform,
the compiler’s modular structure will facilitate its further
development for other robotic platforms as well as its further
extension to satisfy additional user needs.

Parser. The parser parses each PaR-PaR input script and
identifies the user’s declarations and definitions, such as those

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222218

http://sbolstandard.org
https://github.com/JBEI/parpar/blob/master/developer/parpar_bnf.txt
https://github.com/JBEI/parpar/blob/master/developer/parpar_bnf.txt
https://github.com/JBEI/parpar/blob/master/developer/parpar_bnf.txt


relating to the robotic work table, components, volumes, and
recipes. The parser sends these definitions and declarations to
the database manager (see below). The parser additionally
recognizes and decomposes procedures (if any have been
defined) into basic PaR-PaR commands, and then translates all
commands into the PaR-PaR meta-language. The PaR-PaR
meta-language represents a sequence of object transfers in
terms of “transfer units”, and may reference external devices.
Each “transfer unit” consists of a source, destination, quantity
(measured in microliters) and transfer method.
Database Manager. All PaR-PaR virtual objects and PaR-

PaR scripts (translated into the PaR-PaR meta-language) are
stored in the database. All sources and destinations are linked
to objects stored in the database. During the experiment, each
operation with objects (such as reagents, devices, data and etc)
triggers object tracking that updates the object’s history record.
An object’s history contains descriptions of all the events that
the object was involved in. At compilation time, the compiler
updates the object parameters in the database and produces log
files that reflect the changes in object parameters expected after
running the protocol.
Optimizer. The optimizer optimizes the operational flow and

adapts it to the specific configuration of the given robotic
platform. The optimizer receives a list of transactions (in the
PaR-PaR meta-language) from the Database Manager. Opti-
mization in PaR-PaR is currently limited to optimizing
sequential liquid transfers. For example, if the optimizer

recognizes that the specified volume in a “transfer unit” is
larger than the maximum possible volume allowed for a given
pipet, the optimizer subdivides the transfer unit into multiple
transfer units with allowable volumes and manages the order of
each transfer. For platforms with different pipet tips, the
optimizer identifies which tip size is the most suitable for each
transfer. The optimizer also reduces the number of the robot
arm movements by reordering transfer units, while maintaining
the temporal logic of the overall protocol. The optimizer
achieves this in part by clustering together sequential liquid
transfers according to the number of tips concurrently available
to the robot, which allows for the use of more than one tip at
the time. Refer to the PaR-PaR source code repository (see
below) for additional details concerning how this optimization
process has been implemented.

Translator. The translator currently translates a protocol
composed in the PaR-PaR meta-language into the Tecan Evo
robotic platform scripting language. The translator could be
further developed to translate into one of many low-level
robotic scripting languages or human languages, depending on
the translation module. For semiautomated protocols,
automatable portions could be translated into a robotic
scripting language and the off-line/manual portions into a
human language.

PaR-PaR Interfaces, Workflow, License, and Avail-
ability. PaR-PaR has two primary interfaces: a web interactive
mode and a command line mode. The web interactive mode

Figure 2. PaR-PaR web interface and script example. The web interface provides a link to the “How-to write a PaR-PaR script” user’s guide and
provides the user with the opportunity to load a built-in example script (shown here) to quickly get started. The user can either choose from a built-
in set of table configurations or select a robot work table configuration file to upload. Pressing the “Preview table layout” button visually renders the
robotic work table configuration (Figure 3). The PaR-PaR script can be edited in the web interface itself or copy/pasted from another software tool.
Pressing on the “Prepare robot file” button sends the PaR-PaR script and the work table configuration file to the compiler, which triggers the
compilation process (Figure 4). The resulting robot scripting language file output can then be downloaded by clicking on the “Download” button
(not shown).

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222219



(Figures 2, 3) provides a visual editor that facilitates the
composition of PaR-PaR scripts. The PaR-PaR workflow is
shown in Figure 4. PaR-PaR is open-source software under the

BSD license, is freely available from GitHub (https://github.
com/jbei/parpar), and is also available through its web interface
on the public PaR-PaR webserver (http://parpar.jbei.org).
PaR-PaR Software Implementation. PaR-PaR is imple-

mented in the Python 3 (http://www.python.org/) program-
ming language.
PaR-PaR Objects, Memory Allocation, and Variable Scope.

At the start of parsing a PaR-PaR script, PaR-PaR creates a new
Experiment object with an assigned unique ID. Initially, the
Experiment object contains empty dictionaries for each type of
PaR-PaR object (plate, well, component, volume, recipe,
protocol). Python class constructors automatically allocate
memory for the Experiment object and all other PaR-PaR
objects. At the end of parsing the PaR-PaR script, the
Experiment object is passed to the Database Manager. The
database stores the Experiment object’s information in PaR-
PaR meta-language. Variable scope is at the PaR-PaR script/
Experiment object level.
Database. The current database solution is SQLite3

(http://www.sqlite.org/), a lightweight software library avail-
able as a built-in Python module, which implements a self-
contained, server-less, transactional SQL database engine.
SQLite3 stores data in the file system, and therefore requires
little effort to set up. Given the modularity of PaR-PaR, SQLite
could be readily substituted with a classical relational database
such as PostgreSQL (which would, however, require a more

demanding initial setup process). Data is stored in the database
in the fourth normal form, with table attributes representing
objects that are defined within the PaR-PaR configuration
script. This simplifies access to data within PaR-PaR.

Command Line Interface. The command line interface
utilizes argparse, a Python 3.2 built-in module (http://docs.
python.org/dev/library/argparse.html), to handle user input
(e.g., files) and allow the user to specify additional arguments
when running PaR-PaR (e.g., configuration file name, logging
enabled/disabled). Since Python is a cross-platform program-
ming language, the command line interface is operating system
independent.

Web Interface. The web interface (Figures 2, 3) utilizes
bottle.py (http://bottlepy.org), either independently or in
conjunction with Apache/mod_wsgi, and is built with jQuery
(http://jquery.com/), HTML5, CSS3 (http://www.w3.org/),
and Twitter Bootstrap (http://twitter.github.com/bootstrap),
allowing for a cross-platform browser-independent seamless no-
page-refresh user-experience.

j5 License and Availability. j5 is available at no cost to
noncommercial (e.g., academic, nonprofit, or government)
users under a Lawrence Berkeley National Lab end-user license
agreement (http://j5.jbei.org/index.php/License). The soft-
ware is available through the public j5 webserver (http://j5.jbei.
org). The j5 software has been exclusively licensed to
TeselaGen Biotechnology, Inc. (http://teselagen.com) for
commercial use and distribution.

j5 Software Implementation. The core software
implementation of j5 has been reported previously.6 For the
purposes of the further development required for j5 to output
PaR-PaR scripts, it suffices to mention that j5 is written in the
Perl programming language (http://www.perl.org/) and draws
upon the Text::CSV_XS library available from Comprehensive
Perl Archive Network (CPAN, http://www.cpan.org) reposi-
tory to output tab-delimited text files. j5 PaR-PaR output is
documented in the j5 user’s manual (http://j5.jbei.org/
j5manual/pages/98.html). The JBEI-ICE biological part
registry platform15 is indirectly integrated with PaR-PaR via
VectorEditor → DeviceEditor7 → j5 → PaR-PaR. Further
integration between PaR-PaR and JBEI-ICE will be pursued
when sample tracking functionality is integrated into PaR-PaR.

Sequence Availability. DNA sequences (pj5_00047,
pSP5, pSP8, pSY49, pSY055, and pSY61), along with their
associated information (annotated Genbank-format sequence
files, and colony PCR DNA oligo sequences) have been
deposited in the public instance of the JBEI Registry (https://

Figure 3. PaR-PaR web interface robotic table preview.

Figure 4. PaR-PaR workflow. The compiler takes a PaR-PaR script and
a work table configuration file as input, and following compilation,
outputs a robot scripting language file. Following this step, the output
file is loaded into the vendor-supplied robot GUI interface software
(e.g., Tecan Freedom EVOware). The researcher arranges all reagents
and labware on the robotic work table according to the protocol and
then runs the experiment.

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222220

https://github.com/jbei/parpar
https://github.com/jbei/parpar
http://parpar.jbei.org
http://www.python.org/
http://www.sqlite.org/
http://docs.python.org/dev/library/argparse.html
http://docs.python.org/dev/library/argparse.html
http://bottlepy.org
http://jquery.com/
http://www.w3.org/
http://twitter.github.com/bootstrap
http://j5.jbei.org/index.php/License
http://j5.jbei.org
http://j5.jbei.org
http://teselagen.com
http://www.perl.org/
http://www.cpan.org
http://j5.jbei.org/j5manual/pages/98.html
http://j5.jbei.org/j5manual/pages/98.html
https://public-registry.jbei.org; corresponding Part
IDs JPUB_000476-81


public-registry.jbei.org; corresponding Part IDs JPUB_000476-
81).

■ ASSOCIATED CONTENT
*S Supporting Information
Supporting tables, methods, figures, and files. This material is
available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*Tel: +1 510 486 6754. Fax: +1 510 486 4252. E-mail:
njhillson@lbl.gov.
Author Contributions
G.L. and N.S. designed and developed the PaR-PaR software;
N.J.H. designed and developed the j5 software to output PaR-
PaR scripts; G.L., N.S., and N.J.H. wrote the “How-to write a
PaR-PaR script” user’s guide; G.L. and S.P. performed the j5-
designed PCR reaction setup experiments; G.L. and C.B.
performed the colony PCR setup experiments; and G.L., N.S.,
S.P., C.B., J.D.K, and N.J.H. wrote the manuscript.
Notes
The authors declare the following competing financial
interest(s): N.J.H declares competing financial interests in the
form of pending patent applications related to the j5 software,
and equity in TeselaGen Biotechnology, Inc., whose value may
be affected by the publication of this article. Otherwise, the
authors declare no competing financial interests.

■ ACKNOWLEDGMENTS
The authors thank Steve Lane for providing information
technology support; Peter Su for assistance in the construction
of plasmid pj5_00047; Satoshi Yuzawa for providing plasmid
templates pSY49, pSY055, and pSY61; and Joanna Chen, James
Carothers, and Vivek Mutalik for constructive comments on
the manuscript. This work conducted by the Joint BioEnergy
Institute, and the U.S. Department of Energy Joint Genome
Institute was supported by the Office of Science, Office of
Biological and Environmental Research, of the U.S. Department
of Energy (Contract No. DE-AC02−05CH11231); the Depart-
ment of Energy, ARPA-E Electrofuels Program (Contract No.
DE-0000206−1577); the National Science Foundation Grad-
uate Research Fellowship Program (Grant No. DGE 1106400,
to S.P.); and the Berkeley Laboratory Directed Research and
Development Program (to N.J.H.).

■ REFERENCES
(1) Gu, H., Unger, S., and Deng, Y. (2006) Automated Tecan
programming for bioanalytical sample preparation with EZTecan.
Assay Drug Dev. Technol. 4, 721−733.
(2) Leguia, M., Brophy, J., Densmore, D., and Anderson, J. C. (2011)
Automated assembly of standard biological parts. Methods Enzymol.
498, 363−397.
(3) Xia, B., Bhatia, S., Bubenheim, B., Dadgar, M., Densmore, D., and
Anderson, J. C. (2011) Developer’s and user’s guide to Clotho v2.0 A
software platform for the creation of synthetic biological systems.
Methods Enzymol. 498, 97−135.
(4) Densmore, D., Hsiau, T. H., Kittleson, J. T., DeLoache, W.,
Batten, C., and Anderson, J. C. (2010) Algorithms for automated DNA
assembly. Nucleic Acids Res. 38, 2607−2616.
(5) Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J.,
Bhatia, S., Davidsohn, N., Haddock, T., Loyall, J., Schantz, R., Vasilev,
V., and Yaman, F. (2012) An end-to-end workflow for engineering of
biological networks from high-level specifications. ACS Synth. Biol. 1,
317−331.

(6) Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012) j5
DNA assembly design automation software. ACS Synth. Biol. 1, 14−21.
(7) Chen, J., Densmore, D., Ham, T. S., Keasling, J. D., and Hillson,
N. J. (2012) DeviceEditor visual biological CAD canvas. J. Biol. Eng. 6,
1.
(8) Ben Yehezkel, T., Nagar, S., Mackrants, D., Marx, Z., Linshiz, G.,
Shabi, U., and Shapiro, E. (2011) Computer-aided high-throughput
cloning of bacteria in liquid medium. BioTechniques 50, 124−127.
(9) Linshiz, G., Yehezkel, T. B., Kaplan, S., Gronau, I., Ravid, S., Adar,
R., and Shapiro, E. (2008) Recursive construction of perfect DNA
molecules from imperfect oligonucleotides. Mol. Syst. Biol. 4, 191.
(10) Beal, J., Lu, T., and Weiss, R. (2011) Automatic compilation
from high-level biologically-oriented programming language to genetic
regulatory networks. PLoS One 6, e22490.
(11) Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia,
M., Anderson, J. C., and Densmore, D. (2011) Eugenea domain
specific language for specifying and constraining synthetic biological
parts, devices, and systems. PLoS One 6, e18882.
(12) Cai, Y., Wilson, M. L., and Peccoud, J. (2010) GenoCAD for
iGEM: a grammatical approach to the design of standard-compliant
constructs. Nucleic Acids Res. 38, 2637−2644.
(13) Chandran, D., Bergmann, F. T., and Sauro, H. M. (2009)
TinkerCell: modular CAD tool for synthetic biology. J. Biol. Eng. 3, 19.
(14) Chandran, D., Bergmann, F. T., Sauro, H. M., and Densmore, D.
(2011) Computer-aided design for synthetic biology, in Design and
Analysis of Bio-molecular Circuits (Koeppl, H., Densmore, D., di
Bernardo, M., and Setti, G., Eds.) 1st ed., pp 203−224, Springer-
Verlag, New York.
(15) Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J., and
Keasling, J. D. (2012) Design, implementation and practice of JBEI-
ICE: an open source biological part registry platform and tools. Nucleic
Acids Res., DOI: 10.1093/nar/gks531.
(16) Lux, M. W., Bramlett, B. W., Ball, D. A., and Peccoud, J. (2012)
Genetic design automation: engineering fantasy or scientific renewal?
Trends Biotechnol. 30, 120−126.
(17) MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S., and
Stan, G. B. (2011) Computational design approaches and tools for
synthetic biology. Integr. Biol. 3, 97−108.
(18) Olsen, L. R., Hansen, N. B., Bonde, M. T., Genee, H. J., Holm,
D. K., Carlsen, S., Hansen, B. G., Patil, K. R., Mortensen, U. H., and
Wernersson, R. (2011) PHUSER (Primer Help for USER): a novel
tool for USER fusion primer design. Nucleic Acids Res. 39, W61−67.
(19) Richardson, S. M., Liu, S., Boeke, J. D., and Bader, J. S. (2012)
Design-A-Gene with GeneDesign. Methods Mol. Biol. 852, 235−247.
(20) Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009) Automated
design of synthetic ribosome binding sites to control protein
expression. Nat. Biotechnol. 27, 946−950.
(21) Bates, J. T., Chivian, D., and Arkin, A. P. (2011) GLAMM:
genome-linked application for metabolic maps. Nucleic Acids Res. 39,
W400−405.
(22) Carothers, J. M., Goler, J. A., Juminaga, D., and Keasling, J. D.
(2011) Model-driven engineering of RNA devices to quantitatively
program gene expression. Science 334, 1716−1719.
(23) Copeland, W. B., Bartley, B. A., Chandran, D., Galdzicki, M.,
Kim, K. H., Sleight, S. C., Maranas, C. D., and Sauro, H. M. (2012)
Computational tools for metabolic engineering. Metab. Eng. 14, 270−
280.
(24) Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T.,
Muller, H., Annaluru, N., Blake, W. J., Schwerzmann, J. W., Dai, J.,
Lindstrom, D. L., Boeke, A. C., Gottschling, D. E., Chandrasegaran, S.,
Bader, J. S., and Boeke, J. D. (2011) Synthetic chromosome arms
function in yeast and generate phenotypic diversity by design. Nature
477, 471−476.
(25) Hillson, N. J. (2011) DNA assembly method standardization for
synthetic biomolecular circuits and systems, in Design and Analysis of
Bio-molecular Circuits (Koeppl, H., Densmore, D., di Bernardo, M., and
Setti, G., Eds.) 1st ed., pp 295−314, Springer-Verlag, New York.

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222221

https://public-registry.jbei.org; corresponding Part
IDs JPUB_000476-81
https://public-registry.jbei.org; corresponding Part
IDs JPUB_000476-81
http://pubs.acs.org
mailto:njhillson@lbl.gov


(26) Shabi, U., Kaplan, S., Linshiz, G., Benyehezkel, T., Buaron, H.,
Mazor, Y., and Shapiro, E. (2010) Processing DNA molecules as text.
Syst. Synth. Biol. 4, 227−236.
(27) Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H. M., and
Gennari, J. H. (2011) Standard biological parts knowledgebase. PLoS
One 6, e17005.

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb300075t | ACS Synth. Biol. 2013, 2, 216−222222


